Package: rdyncall (via r-universe)

September 15, 2024
Version 0.9.0.9000

Title Improved Foreign Function Interface and Dynamic Bindings to C
Libraries

Author Daniel Adler <dadler@uni-goettingen.de>, Hongyuan Jia
<hongyuanjia@cqust.edu.cn>

Maintainer Hongyuan Jia <hongyuanjia@cqust.edu.cn>

Depends R (>=3.0.0)

Description Provides a cross-platform framework for dynamic binding of
C libraries using a flexible Foreign Function Interface
('FFT'). The FFI supports almost all fundamental C types,
multiple calling conventions, symbolic access to foreign C
'struct'/'union' data types and wrapping of R functions as C
callback function pointers. Dynamic bindings to shared C
libraries are data-driven by cross-platform binding
specification using a compact plain text format; an initial
repository of bindings to a couple of common C libraries
('OpenGL', 'SDL2', 'Expat', 'glew', 'CUDA', 'OpenCL', 'ODE',
'R") comes with the package. The package includes a variety of
technology demos and OS-specific notes for installation of
shared libraries.

License file LICENSE

URL https://dyncall.org

Suggests tinytest

Repository https://hongyuanjia.r-universe.dev

RemoteUrl https://github.com/hongyuanjia/rdyncall
RemoteRef HEAD

RemoteSha f54bfd7786b34f83cdd78d570e8d97d163c1c790

Contents

callback e

https://dyncall.org

callback

dynbind e e 4
dyncall L e 6
dynfind e 10
dynload e 11
dynporto e e 15
packing L. 17
rdyncall L e e e e 19
rdyncall-demos 22
SLIUCE e e 26
typeinfoo 29
Utils ..o 30

Index 32

callback Dynamic wrapping of R functions as C callbacks
Description

Function to wrap R functions as C function pointers.

Usage

ccallback(signature, fun, envir = new.env())

Arguments
signature character string specifying the call signature of the C function callback type.
fun R function to be wrapped as a C function pointer.
envir the environment in which to evaluate the call to fun.

Details

Callbacks are user-defined functions that are registered in a foreign library and that are executed
at a later time from within that library. Examples include user-interface event handlers that are
registered in GUI toolkits, and, comparison functions for custom data types to be passed to generic
sort algorithm.

The function ccallback wraps an R function fun as a C function pointer and returns an external
pointer. The foreign C function type of the wrapped R function is specified by a call signature given
by signature.

When the C function pointer is called, a global callback handler (implemented in C) is executed
first, that dynamically creates an R call expression to fun using the arguments, passed from C and
converted to R, according to the argument types signature within the call signature specified. See
dyncall for details on the format.

Finally, the handler evaluates the R call expression within the environment given by envir. On
return, the R return value of fun is coerced to the C value, according to the return type signature
specified in signature. If an error occurs during the evaluation, the callback will be disabled for
further invocations. (This behaviour might change in the future.)

callback 3

Value

ccallback returns an external pointer to a synthetically generated C function.

Portability

The implementation is based on the dyncallback library (part of the DynCall project).

The following processor architectures are supported: X86, X64, ARM (including Thumb) and par-
tial stable support for PowerPC 32-bit; The library has been built and tested to work on various OSs:
Linux, Mac OS X, Windows 32/64-bit, BSDs, Haiku, Nexenta/Open Solaris, Minix and Plan9, as
well as embedded platforms such as Linux/ARM (OpenMoko, Beagleboard, Gumstix, Efika MX,
Raspberry Pi), Nintendo DS (ARM), Sony Playstation Portable (MIPS 32-bit/eabi) and iOS (ARM
- armv6 mode ok, armv7 unstable). Special notes for PowerPC 32-Bit: Callbacks for System V
(Linux/BSD) are unstable in this release; MacOS X/Darwin works fine. In the context of R, dyn-
callback has currently no support for callbacks on MIPS, SPARC and PowerPC 64-Bit. Using
dyncallback to implement non-default calling conventions is not supported yet. (e.g. Window Pro-
cedures on Win32/X86).

Note

The call signature MUST match the foreign C callback function type, otherwise an activated call-
back call from C can lead to a fatal R process crash.

A small amount of memory is allocated with each wrapper. A finalizer function that frees the
allocated memory is registered at the external pointer. If the external callback function pointer is
registered in a C library, a reference should also be held in R as long as the callback can be activated
from a foreign C run-time context, otherwise the garbage collector might call the finalizer and the
next invocation of the callback could lead to a fatal R process crash as well.

References

Adler, D. (2012) “Foreign Library Interface”, The R Journal, 4(1), 30-40, June 2012. https:
//journal.r-project.org/articles/RJ-2012-004/

Adler, D., Philipp, T. (2008) DynCall Project. https://dyncall.org

See Also

See signature for details on call signatures, reg. finalizer for details on finalizers.

Examples

Create a function, wrap it to a callback and call it via dyncall:
f <- function(x, y) x +y

cb <- ccallback("ii)i", f)

r <- dyncall(cbh, "ii)i", 20, 3)

Sort vectors directly via 'gsort' C library function using an R callback:
dynbind(c("msvert”,"c"”,"c.s0.6"), "qgsort(piip)v;")
cb <- ccallback("pp)i”, function(px, py) {

x <- unpack(px, @, "d")

y <= unpack(py, @, "d")

https://journal.r-project.org/articles/RJ-2012-004/
https://journal.r-project.org/articles/RJ-2012-004/
https://dyncall.org

4 dynbind

if (x > y) return(1) else if (x == y) return(@) else return(-1)
»
X <= rnorm(100)
gsort(x, length(x), 8, cb)
X

dynbind Binding C library functions via thin call wrappers

Description

Function to bind several foreign functions of a C library via installation of thin R call wrappers.

Usage
dynbind(libnames, signature, envir = parent.frame(), callmode = "default”,
pattern = NULL, replace = NULL, funcptr = FALSE)
Arguments
libnames vector of character strings giving short library names of the shared library to be
loaded. See dynfind for details.
signature character string specifying the library signature that determines the set of for-
eign function names and types. See details.
envir the environment to use for installation of call wrappers.
callmode character string specifying the calling convention, see details.
pattern NULL or regular expression character string applied to symbolic names.
replace NULL or replacement character string applied to pattern part of symbolic
names.
funcptr logical, that indicates whether foreign objects refer to functions (FALSE, default)
or to function pointer variables (TRUE rarely needed).
Details

dynbind makes a set of C functions available to R through installation of thin call wrappers. The
set of functions, including the symbolic name and function type, is specified by signature ; a
character string that encodes a library signature:

The library signature is a compact plain-text format to specify a set of function bindings. It
consists of function names and corresponding call signatures. Function bindings are separated by
‘;” (semicolon) ; white spaces (including tab and new line) are allowed before and after semicolon.

Sfunction-name (call-signature ; ...

Here is an example that specifies three function bindings to the OpenGL library:

dynbind 5
"glAccum(If)v ; glClear(I)v ; glClearColor(ffff)v ;"

Symbolic names are resolved using the library specified by libnames using dynfind for loading.
For each function, a thin call wrapper function is created using the following template:

function(...) .dyncall.<MODE> (<TARGET>, <SIGNATURE>, ...)

<MODE> is replaced by callmode argument, see dyncall for details on calling conventions. <TARGET>
is replaced by the external pointer, resolved by the ‘function-name’. <SIGNATURE> is replaced by
the call signature string contained in signature.

The call wrapper is installed in the environment given by envir. The assignment name is obtained
from the function signature. If pattern and replace is given, a text replacement is applied to the
name before assignment, useful for basic C name space mangling such as exchanging the prefix.

As a special case, dynbind supports binding of pointer-to-function variables, indicated by setting
funcptr to TRUE, in which case <TARGET> is replaced with the expression unpack (KTARGET>, "p", @)
in order to dereference <TARGET> as a pointer-to-function variable at call-time.

Value

The function returns a list with two fields:

libhandle External pointer returned by dynload.

unresolved. symbols
vector of character strings, the names of unresolved symbols.

As a side effect, for each wrapper, dynbind assigns the ‘function-name’ to the corresponding call
wrapper function in the environment given by envir.

If no shared library is found, an error is reported.

See Also

dyncall for details on call signatures and calling conventions, dynfind for details on short library
names, unpack for details on reading low-level memory (e.g. dereferencing of (function) pointer
variables).

Examples

Install two wrappers to functions of the R shared C library.
info <- dynbind("R","

R_ShowMessage(Z)v;

R_rsort(pi)v;

)

R_ShowMessage("hello")

6 dyncall

dyncall Foreign Function Interface with support for almost all C types

Description

Functions to call pre-compiled code with support for most C argument and return types.

Usage
dyncall(address, signature, ... , callmode = "default”)
dyncall.default (address, signature, ...)
dyncall.cdecl (address, signature, L)
dyncall.stdcall (address, signature, L)
dyncall.thiscall (address, signature, L)
dyncall.thiscall.msvc(address, signature, L)
dyncall.thiscall.gcc (address, signature, L)
dyncall.fastcall (address, signature, L)
dyncall.fastcall.msvc(address, signature, L)
dyncall.fastcall.gcc (address, signature, L)
Arguments
address external pointer to foreign function.
signature character string specifying the call signature that describes the foreign function
type. See details.
callmode character string specifying the calling convention. This argument has no effect
on most platforms, but on Microsoft Windows 32-Bit Intel/x86 platforms. See
details.
arguments to be passed to the foreign function. Arguments are converted from
R to C values according to the call signature. See details.
Details

dyncall offers a flexible Foreign Function Interface (FFI) for the C language with support for calls
to arbitrary pre-compiled C function types at run-time. Almost all C fundamental argument- and
return types are supported including extended support for pointers. No limitations is given for arity
as well. In addition, on the Microsoft Windows 32-Bit Intel/x86 platform, it supports multiple
calling conventions to interoperate with System DLLs. Foreign C function types are specified via
plain text type signatures. The foreign C function type of the target function is known to the FFI in
advance, before preparation of the foreign call via plain text type signature information. This has
several advantages: R arguments do not need to match exactly. Although R lacks some fundamental
C value types, they are supported via coercion at this interface (e.g. C float and 64-bit integer).
Arity and argument type checks help make this interface type-safe to a certain degree and encourage
end-users to use interface from the interpreter prompt for rapid application development.

The foreign function to be called is specified by address, which is an external pointer that is
obtained from dynsym or getNativeSymbolInfo.

dyncall 7

signature is a character string that specifies the formal argument-and-return types of the foreign
function using a call signature string. It should match the function type of the foreign function
given by address, otherwise this can lead to a fatal R process crash.

The calling convention is specified explicitly via function dyncall using the callmode argument or
implicitly by using .dyncall.* functions. See details below.

Arguments passed via . . . are converted to C according to signature ; see below for details.

Given that the signature matches the foreign function type, the FFI provides a certain level of
type-safety to users, when exposing foreign functions via call wrappers such as done in dynbind
and dynport. Several basic argument type-safety checks are done during preparation of the foreign
function call: The arity of formals and actual arguments must match and they must be compatible
as well. Otherwise, the foreign function call is aborted with an error before risking a fatal system
crash.

Value
Functions return the received C return value converted to an R value. See section ‘Call Signature’
below for details.

Type Signature

Type signatures are used by almost all other signature formats (call, library, structure and union
signature) and also by the low-level (un)-packing functions.

The following table gives a list of valid type signatures for all supported C types.

Type Signature C type valid R argument types R return type
B’ bool raw,logical,integer,double logical
c’ char raw,logical,integer,double integer
C unsigned char raw,logical,integer,double integer
’s’ short raw,logical,integer,double integer
'S’ unsigned short raw,logical,integer,double integer
i’ int raw,logical,integer,double integer
T unsigned int raw,logical,integer,double double
'3’ long raw,logical,integer,double double
T unsigned long raw,logical,integer,double double
' long long raw,logical,integer,double double
L’ unsigned long long raw,logical,integer,double double
f? float raw,logical,integer,double double
d’ double raw,logical,integer,double double
P’ C pointer any vector,externalptr, NULL externalptr
A char* character, NULL character or NULL
X’ SEXP any any
v’ void invalid NULL
3 C type* (pointer) any vector,externalptr, NULL externalptr
"x<" typename ’>’ typename* (pointer) raw,externalptr externalptr

The last two rows of the table the above refer to typed pointer signatures. If they appear as a return
type signature, the external pointer returned is a S3 struct object. See cdata for details.

8 dyncall

Call Signatures

Call Signatures are used by dyncall and ccallback to describe foreign C function types. The
general form of a call signature is as following:

(argument-type)* ’)’ return-type

The calling sequence given by the argument types signature is specified in direct left-fo-right
order of the formal argument types defined in C. The type signatures are put in sequence without
any white space in between. A closing bracket character *)’ marks the end of argument types,
followed by a single return type signature.

Derived pointer types can be specified as untyped pointers via 'p' or via prefix '*' following the
underlying base type (e.g. '*d' for double x) which is more type-safe. For example, this can
prevent users from passing a numeric R atomic as int* if using '*i' instead of 'p'.

Dervied pointer types to aggregate union or struct types are supported in combination with the
framework for handling foreign data types. See cdata for details. Once a C type is registered, the
signature *<typename> can be used to refer to a pointer to an aggregate C object rype*. If typed
pointers to aggregate objects are used as a return type and the corresponding type information exists,
the returned value can be printed and accessed symbolically.

Here are some examples of C function prototypes and corresponding call signatures:

C Function Prototype Call Signature
double sgrt(double); "d)d”
double dnorm(double,double,double,int); "dddi)d”
void R_isort(int*,int); "pi)v" or "*ii)v"
void revsort(doublex,intx,int); "ppi)v" or "*xdxii)v"
int SDL_PollEvents(SDL_Event *); "p)i” or "x<SDL_Event>)i"
SDL_Surface* SDL_SetVideoMode(int,int,int,int); "iiii)p"” or "iiii)*<SDL_Surface>"

Calling convention

Calling Conventions specify ‘how’ sub-routine calls are performed, and, ‘how’ arguments and re-
sults are passed, on machine-level. They differ significantly among families of CPU Architectures
as well as OS and Compiler implementations.

On most platforms, a single "default” C Calling Convention is used. As an exception, on the
Microsoft Windows 32-Bit Intel/x86 platform several calling conventions are common. Most of the
C libraries still use a "default” C (also known as "cdecl") calling convention, but when working
with Microsoft System APIs and DLLs, the "stdcall” calling convention must be used.

It follows a description of supported Win32 Calling Conventions:

"cdecl” Dummy alias to default

"stdcall” C functions with stdcall calling convention. Useful for all Microsoft Windows System
Libraries (e.g. KERNEL32.DLL, USER32.DLL, OPENGL32.DLL ...). Third-party libraries
usually prefer the default C cdecl calling convention.

dyncall 9

"fastcall.msvc” C functions with fastcall calling convention compiled with Microsoft Visual
C++ Compiler. Very rare usage.

"fastcall.gcc” C functions with fastcall calling convention compiled with GNU C Compiler.
Very rare usage.

"thiscall” C++ member functions.
"thiscall.gcc” C++ member functions compiled with GNU C Compiler.

"thiscall.msvc"” C++ member functions compiled with Microsoft Visual C++ Compiler.

As of the current version of this package and for practical reasons, the callmode argument does
not have an effect on almost all platforms, except that if R is running on Microsoft Windows 32-
Bit Intel/x86 platform, dyncall uses the specified calling convention. For example, when loading
OpenGL across platforms, "stdcall” should be used instead of "default”, because on Windows,
OpenGL is a System DLL. This is very exceptional, as in most other cases, "default” (or "cdecl”,
the alias) need to be used for normal C shared libraries on Windows.

At this stage of development, support for C++ calls should be considered experimental. Support for
Fortran is planed but not yet implemented in dyncall.

Portability

The implementation is based on the dyncall library (part of the DynCall project).

The following processor architectures are supported: X86 32- and 64-bit, ARM v4t-v7 oabi/eabi
(aapcs) and armhf including support for Thumb ISA, PowerPC 32-bit, MIPS 32- and 64-Bit, SPARC
32- and 64-bit; The library has been built and tested to work on various OSs: Linux, Mac OS X,
Windows 32/64-bit, BSDs, Haiku, Nexenta/Open Solaris, Solaris, Minix and Plan9, as well as em-
bedded platforms such as Linux/ARM (OpenMoko, Beagleboard, Gumstix, Efika MX, Raspberry
Pi), Nintendo DS (ARM), Sony Playstation Portable (MIPS 32-bit/eabi) and iOS (ARM - armv6
mode ok, armv7 unstable). In the context of R, dyncall has currently no support for PowerPC
64-Bit.

Note

The target address, calling convention and call signature MUST match foreign function type, oth-
erwise the invocation could lead to a fatal R process crash.

References

Adler, D. (2012) “Foreign Library Interface”, The R Journal, 4(1), 30-40, June 2012. https:
//journal.r-project.org/articles/RJ-2012-004/

Adler, D., Philipp, T. (2008) DynCall Project. https://dyncall.org

See Also

dynsym and getNativeSymbolInfo for resolving symbols, dynbind for binding several foreign
functions via thin call wrappers, . C for the traditional FFI to C.

https://journal.r-project.org/articles/RJ-2012-004/
https://journal.r-project.org/articles/RJ-2012-004/
https://dyncall.org

10 dynfind

Examples

mathlib <- dynfind(c("msvcrt”,”m"”,"m.so.6"))
x <- dynsym(mathlib, "sqrt"”)
dyncall(x, "d)d", 144L)

dynfind Portable searching and loading of shared libraries

Description

Function to load shared libraries using a platform-portable interface.

Usage

dynfind(libnames, auto.unload=TRUE)

Arguments
libnames vector of character strings specifying several short library names.
auto.unload logical: if TRUE then a finalizer is registered that closes the library on garbage
collection. See dynload for details.
Details

dynfind offers a platform-portable naming interface for loading a specific shared library.

The naming scheme and standard locations of shared libraries are OS-specific. When loading a
shared library dynamically at run-time across platforms via standard interfaces such as dynload or
dyn.load, a platform-test is usually needed to specify the OS-dependant library file path.

This library name problem is encountered via breaking up the library file path into several abstract
components:

<location> <prefix> <libname> <suffix>

By permutation of values in each component and concatenation, a list of possible file paths can be
derived. dynfind goes through this list to try opening a library. On the first success, the search is
stopped and the function returns.

Given that the three components ‘location’, ‘prefix’ and ‘suffix’ are set up properly on a per OS
basis, the unique identification of a library is given by ‘libname’ - the short library name.

For some libraries, multiple ‘short library name’ are needed to make this mechanism work across
all major platforms. For example, to load the Standard C Library across major R platforms:

lib <- dynfind(c("msvcrt”,"c","c.s0.6"))

dynload 11

On Windows MSVCRT.d11 would be loaded; 1ibc.dylib on Mac OS X; libc.so.6 on Linux and
libc.so on BSD.

Here is a sample list of values for the three other components:

* ‘location’: “/ust/local/lib/”, “/Windows/System32/”.

132

e ‘prefix’: “lib” (common),

o ‘suffix’: “.dIl” (Windows), “.so” (ELF), “.dylib” (Mac OS X) and *”’ (empty - useful for all
platforms).

(empty - common on Windows).

The vector of ‘locations’ is initialized by environment variables such as ’PATH’ on Windows and
LD_LIBRARY_PATH on Unix-flavour systems in additional to some hardcoded locations: ‘/opt/local/lib’,
‘/usr/local/lib’, ‘/usr/1lib’ and ‘/1ib’. (The set of hardcoded locations might expand and
change within the next minor releases).

The file extension depends on the OS:’.d11’ (Windows), ’.dylib’ (Mac OS X), ’.so’ (all others).

On Mac OS X, the search for a library includes the ‘Frameworks’ folders as well. This happens
before the normal library search procedure and uses a slightly different naming pattern in a separate
search phase:

<frameworksLocation> Frameworks/ <libname> framework/ <libname>

The ‘“frameworksLocation’ is a vector of locations such as /System/Library/ and /Library/.

dynfind loads a library via dynload passing over the parameter auto.unload.

Value
dynfind returns an external pointer (library handle), if search was successful. Otherwise, if no
library is located, a NULL is returned.

See Also

See dynload for details on the loader interface to the OS-specific dynamic linker.

dynload Loading of shared libraries and resolving of symbols (Alternative
Framework)

Description

Alternative framework for loading of shared libraries and resolving of symbols. The framework of-
fers automatic unload management of shared libraries and provides a direct interface to the dynamic
linker of the OS.

12 dynload

Usage

dynload(libname, auto.unload=TRUE)
dynsym(libhandle, symname, protect.lib=TRUE)

dynunload(libhandle)
dynpath(libhandle)
dyncount(libhandle)
dynlist(libhandle)
Arguments
libname character string giving the pathname to a shared library in OS-specific notation.
libhandle external pointer representing a handle to an opened library.
symname character string specifying a symbolic name to be resolved.
auto.unload logical, if TRUE a finalizer will be registered that will automatically unload the
library.
protect.lib logical, if TRUE resolved external pointers protect library handles from finaliza-
tion.
Details

dynload loads a shared library into the current R process using the OS-specific dynamic linker
interface. The libname is passed as-is directly to the dynamic linker and thus is given in OS-
specific notation - see below for details. On success, a handle to the library represented as an
external pointer R objects is returned, otherwise NULL. If auto.unload is TRUE, a finalizer function
is registered that will unload the library on garbage collection via dynunload.

dynsym looks up symbol names in loaded libraries and resolves them to memory addresses returned
as external pointer R objects. Otherwise NULL is returned. If protect.lib is TRUE, the library
handle is protected by resolved address external pointers from unloading.

dynpath returns the full path of the loaded library specified by 1ibhandle.

dyncount returns the number of symbols in the loaded library specified by 1ibhandle.
dynlist returns all symbol names in the loaded library specified by 1ibhandle.
dynunload explicitly unreferences the loaded library specified by 1ibhandle.

Setting both auto.unload and protect.lib to TRUE, libraries remain loaded as long as resolved
symbols are in use, and they get automatic unloaded when no resolved symbols remain.

Dynamic linkers usually hold an internal link count, such that a library can be opened multiple
times via dynload - with a balanced number of calls to dynunload that decreases the link count to
unload the library again.

Similar functionality is available via dyn. load and getNativeSymbolInfo, except that path names
are filtered and no automatic unloading of libraries is supported.

Value

dynload returns an external pointer libhandle on success. Otherwise NULL is returned, if the
library is not found or the linkage failed.

dynload 13

dynsym returns an external pointer address on success. Otherwise NULL is returned, if the address
was invalid or the symbol has not been found.

dynunload always returns NULL.
dynpath returns a single string.
dyncount returns a single integer.

dynlist returns a character vector.

Shared library

Shared libraries are single files that contain compiled code, data and meta-information. The code
and data can be loaded and mapped to a process at run-time once. Operating system platforms have
slightly different schemes for naming, searching and linking options.

Platform Binary format File Extension
Linux, BSD derivates and Sun Solaris ELF format so

Darwin / Apple Mac OS X Mach-O format dylib
Microsoft Windows PE format dll

Library search on Posix platforms (Linux,BSD,Sun Solaris)

The following text is taken from the Linux dlopen manual page:

These search rules will only be applied to path names that do not contain an embedded ’/.

* If the LD_LIBRARY_PATH environment variable is defined to contain a colon-separated list of
directories, then these are searched.

* The cache file /etc/1d. so.cache is checked to see whether it contains an entry for filename.

* The directories /1ib and /usr/1ib are searched (in that order).

If the library has dependencies on other shared libraries, then these are also automatically loaded
by the dynamic linker using the same rules.

Library search on Darwin (Mac OS X) platforms

The following text is taken from the Mac OS X dlopen manual page:

dlopen() searches for a compatible Mach-O file in the directories specified by a set of environ-
ment variables and the process’s current working directory. When set, the environment variables
must contain a colon-separated list of directory paths, which can be absolute or relative to the current
working directory. The environment variables are $LD_LIBRARY_PATH, $DYLD_LIBRARY_PATH,
and $SDYLD_FALLBACK_LIBRARY_PATH. The first two variables have no default value. The de-
fault value of $SDYLD_FALLBACK_LIBRARY_PATH is $SHOME/lib;/ust/local/lib;/usr/lib. d1lopen()
searches the directories specified in the environment variables in the order they are listed.

When path doesn’t contain a slash character (i.e. it is just a leaf name), dlopen() searches the fol-
lowing until it finds a compatible Mach-O file: $LD_LIBRARY_PATH, $DYLD_LIBRARY_PATH,
current working directory, $DYLD_FALLBACK_LIBRARY_PATH.

When path contains a slash (i.e. a full path or a partial path) dlopen() searches the following the
following until it finds a compatible Mach-O file: $DYLD_LIBRARY_PATH (with leaf name from

14 dynload

path), current working directory (for partial paths), $DYLD_FALLBACK_LIBRARY_PATH (with
leaf name from path).

Library search on Microsoft Windows platforms

The following text is taken from the Window SDK Documentation:

If no file name extension is specified [...], the default library extension .d11 is appended. However,
the file name string can include a trailing point character (.) to indicate that the [shared library]
module name has no extension. When no path is specified, the function searches for loaded modules
whose base name matches the base name of the module to be loaded. If the name matches, the load
succeeds. Otherwise, the function searches for the file in the following sequence:

* The directory from which the application loaded.
* The current directory.

* The system directory. Use the GetSystemDirectory Win32 API function to get the path of this
directory.

» The 16-bit system directory. There is no function that obtains the path of this directory, but it
is searched. Windows Me/98/95: This directory does not exist.

* The Windows directory. Use the GetWindowsDirectory Win32 API function to get the path
of this directory.

¢ The directories that are listed in the PATH environment variable.

Windows Server 2003, Windows XP SP1: The default value of
HKLM\System\CurrentControlSet\Control\Session Manager\SafeDl1SearchMode

is 1 (current directory is searched after the system and Windows directories).

Windows XP: If
HKLM\System\CurrentControlSet\Control\Session Manager\SafeDl1lSearchMode

is 1, the current directory is searched after the system and Windows directories, but before the
directories in the PATH environment variable. The default value is O (current directory is searched
before the system and Windows directories).

The first directory searched is the one directory containing the image file used to create the calling
process. Doing this allows private dynamic-link library (DLL) files associated with a process to be
found without adding the process’s installed directory to the PATH environment variable.

The search path can be altered using the SetD11Directory function. This solution is recommended
instead of using SetCurrentDirectory or hard-coding the full path to the DLL.

If a path is specified and there is a redirection file for the application, the function searches for
the module in the application’s directory. If the module exists in the application’s directory, the
LoadLibrary function ignores the specified path and loads the module from the application’s di-
rectory. If the module does not exist in the application’s directory, LoadLibrary loads the module
from the specified directory. For more information, see Dynamic Link Library Redirection from the
Windows SDK Documentation.

dynport 15

Portability

The implementation is based on the dynload library (part of the DynCall project) which has been
ported to all major R platforms (ELF (Linux,BSD,Solaris), Mach-O (Mac OS X) and Portable
Executable (Win32/64)).

See Also

This facility is used by dynfind and dynbind. Similar functionality is available from dyn.load
and getNativeSymbolInfo.

dynport Dynamic R Bindings to standard and common C libraries

Description

Function to bind APIs of standard and common C libraries to R via dynamically created interface
environment objects comprising R wrappers for C functions, object-like macros, enums and data

types.
Usage

dynport(portname, portfile=NULL,
repo=system.file("dynports”, package="rdyncall"))

Arguments
portname the name of a dynport, given as a literal or character string.
portfile NULL or character string giving a script file to parse ; portname and repo are .
repo character string giving the path to the root of the dynport repository.

Details

dynport offers a convenient method for binding entire C libraries to R. This mechanism runs cross-
platform and uses dynamic linkage but it implies that the run-time library of a choosen binding need
to be preinstalled in the system. Depending on the OS, the run-time libraries may be preinstalled
or require manual installation. See rdyncall-demos for OS-specific installation notes for several C
libraries.

The binding method is data-driven using platform-portable specifications named DynPort files.
DynPort files are stored in a repository that is installed as part of the package installation. When
dynport processes a DynPort file given by portname, an environment object is created, populated
with R wrapper and helper objects that make up the interface to the C library, and attached to the
search path with the name dynport:<PORTNAME>. Unloading of previously loaded dynport envi-
ronments is achieved via detach(dynport:<PORTNAME>).

Up to rdyncall version 0.7.4, R name space objects were used as containers as described in the
article Foreign Library Interface, thus dynport ‘packages’ appeared as "package: <PORTNAME>" on
the search path. The mechanism to create synthesized R packages at run-time required the use of

16

dynport

.Internal calls. But since the use of internal R functions is not permitted for packages distributed
on CRAN we downgraded the package to use ordinary environment objects starting with version
0.7.5 until a public interface for the creation of R namespace objects is available.

The following gives a list of currently available DynPorts:

DynPort name/C Library Description

expat Expat XML Parser Library

GL OpenGL 1.1 API

GLU OpenGL Utility Library

GLUT OpenGL Utility Toolkit Library

SDL Simple DirectMedia Layer library

SDL_image Loading of image files (png,jpeg..)
SDL_mixer Loading/Playing of ogg/mp3/mod music files.
SDL_ttf Loading/Rendering of True Type Fonts.
SDL_net Networking library.

glew OpenGL Extension Wrangler (includes OpenGL 3.0)
glfw OpenGL Windowing/Setup Library

gl3 strict OpenGL 3 (untested)

R R shared library

ode Open Dynamics (Physics-) Engine (untested)
cuda NVIDIA Cuda (untested)

csound Sound programming language and library
opencl OpenCL (untested)

stdio C Standard Library I/O Functions

glpk GNU Linear Programming Kit

EGL Embedded Systems Graphics Library

As of the current implementation DynPort files are R scripts that perform up to three tasks:

* Functions (and pointer-to-function variables) are mapped via dynbind and a description of the
C library using a library signatures.

* Symbolic names are assigned to its values for object-like macro defines and C enum types.

* Run-time type-information objects for aggregate C data types (struct and union) are registered
via cstruct and cunion.

The file path to the DynPort file is derived from portname per default. This would refer to "<repo>/<portname>.R"
where repo usually refers to the initial DynPort repository located at the sub-folder "dynports/" of
the package. If portfile is given, then this value is taken as file path (usually for testing purpose).

A tool suite, comprising AWK (was boost wave), GCC Preprocessor, GCC-XML and XSLT, was
used to generate the available DynPort files automatically by extracting type information from C
library header files.

In a future release, the DynPort format will be changed to a language-neutral text file document.
For the interested reader: A first prototyp is currently available in an FFI extension to the Lua
programming language (see luadyncall subversion sub-tree). A third revision (including function
types in call signatures, bitfields, arrays, etc..) is currently in development.

packing 17

References

Adler, D. (2012) “Foreign Library Interface”, The R Journal, 4(1), 30-40, June 2012. https:
//journal.r-project.org/articles/RJ-2012-004/

Adler, D., Philipp, T. (2008) DynCall Project. https://dyncall.org
Clark, J. (1998). expat - XML Parser Toolkit. https://expat.sourceforge.net

Ikits, M. and Magallon, M. (2002). The OpenGL Extension Wrangler Library. https://glew.
sourceforge.net

Latinga, S. (1998). The Simple DirectMedia Layer Library. http://www.1libsdl.org

Segal, M. and Akeley, K. (1992). The OpenGL Graphics System. A Specification, Version 1.0.
http://www.opengl.org

Smith, R. (2001). Open Dynamics Engine. http://www.ode.org

Examples

Not run:

Using SDL and OpenGL in R

dynport (SDL)

dynport(GL)

Initialize Video Sub-system
SDL_Init(SDL_INIT_VIDEO)

Initialize Screen with OpenGL Context and Double Buffering
SDL_SetVideoMode (320,256, 32, SDL_OPENGL+SDL_DOUBLEBUF)
Clear Color and Clear Screen

glClearColor(0,0,1,0) # blue

glClear (GL_COLOR_BUFFER_BIT)

Flip Double-Buffer

SDL_GL_SwapBuffers()

End(Not run)

packing Handling of foreign C fundamental data types

Description

Functions to unpack/pack (read/write) foreign C data types from/to R atomic vectors and C data
objects such as arrays and pointers to structures.

Usage

pack(x, offset, sigchar, value)
unpack(x, offset, sigchar)

https://journal.r-project.org/articles/RJ-2012-004/
https://journal.r-project.org/articles/RJ-2012-004/
https://dyncall.org
https://expat.sourceforge.net
https://glew.sourceforge.net
https://glew.sourceforge.net
http://www.libsdl.org
http://www.opengl.org
http://www.ode.org

18 packing

Arguments
X atomic vector (logical, raw, integer or double) or external pointer.
offset integer specifying byte offset starting at 0.
sigchar character string specifying the C data type by a type signature.
value R object value to be coerced and packed to a foreign C data type.
Details

The function pack converts an R value into a C data type specified by the signature sigchar and it
writes the raw C foreign data value at byte position of fset into the object x. The function . unpack
extracts a C data type according to the signature sigchar at byte position of fset from the object x
and converts the C value to an R value and returns it.

Byte of fset calculations start at O relative to the first byte in an atomic vectors data area.

If x is an atomic vector, a bound check is carried out before read/write access. Otherwise, if x is an
external pointer, there is only a C NULL pointer check.

Value

unpack returns a read C data type coerced to an R value.

See Also

dyncall for details on type signatures.

Examples

transfer double to array of floats and back, compare precision:
n<-=6
input <- rnorm(n)
buf <- raw(n*4)
for (i in 1:n) {
pack(buf, 4 * (i - 1), "f", input[i])
3

output <- numeric(n)
for (i in 1:n) {

output[i] <- unpack(buf, 4 x (i - 1), "f")
3
difference between double and float
difference <- output - input
print(cbind(input, output, difference))

rdyncall 19

rdyncall Improved Foreign Function Interface (FFI) and Dynamic Bindings to
C Libraries (e.g. OpenGL)

Description

The package provides a cross-platform framework for dynamic binding of C libraries using a flex-
ible Foreign Function Interface (FFI). The FFI supports almost all fundamental C types, multiple
calling conventions, symbolic access to foreign C struct/union data types and wrapping of R func-
tions as C callback function pointers. Dynamic bindings to shared C libraries are data-driven by
cross-platform binding specification using a compact plain text format ; an initial repository of
bindings to a couple of common C libraries (OpenGL, SDL, Expat, glew, CUDA, OpenCL, ODE,
R) comes with the package. The package includes a variety of technology demos and OS-specific
notes for installation of shared libraries.

Details

rdyncall offers a stack of interoperability technologies for working with foreign compiled lan-
guages using cross-platform portable abstraction methods.

For R application development, the package facilitates direct access from R to the C Application
Programming Interface (API) of common libraries. This enables a new style of development: R
applications can use low-level services of portable C libraries. System-level code can be imple-
mented in R without leaving the language. C APIs can be explored from within the R interpreter.
Moving the R code from one platform to the other does not involve recompilation. Ofcourse, the
run-time libraries need to be installed using a standard procedure of the target Operating-System
Distribution. See rdyncall-demos for details on this.

For R core development and research, the package provides an improved Foreign Function Interface
(FF]) that can be used to call arbitrary foreign precompiled C code without the need for additional
compilation of wrapper code. The back-end library is extendable with new calling conventions
(such as Fortran,Pascal, COM,etc.. - which has not been the focus as of this release, but might be
supported officially in the near futurue). Basic type-safety checks for argument passing and frame-
work support for working with foreign C data types such as pointers, arrays, structs and wrapping
of R functions into first-level C callback function pointers round up this framework.

Overview
* Flexible FFI with support for almost all C types, type-safety checks and multiple calling con-
ventions. See dyncall.

* Loading of shared libraries with automatic unload management and using direct access to OS
linker. See dynload.

* Cross-platform naming and loading of shared libraries. See dynfind.
* Binding C library functions via thin call wrappers. See dynbind.
* Handling of foreign C pointer, array and struct/union data types. See packing and struct.

* Dynamic wrapping of R functions as C function pointers to be used in C callbacks. See
ccallback.

20 rdyncall

* Dynamic bindings to standard and common C libraries and APIs (functions, variables, macro
constants, enums, struct and union types). See dynport.

Getting Started

Several demos ranging from simple FFI calls to the C standard math library up to more complex
3D OpenGL/SDL Applications are available. See demos(package="rdyncall") for an overview.
Some demos require shared C libraries to be installed in the system. Please read rdyncall-demos for
details.

Supported Platforms
The low-level implementation is mainly based on libraries from the DynCall Project (https://
dyncall.org). The library suite is distributed as part of the package source tree.

The dyncall and dyncallback libraries implement generic low-level services with the help of a small
amount of hand-written assembly code and careful modeling of the target machine’s calling se-
quence for each platform to support.

As of version 0.6, the following processor architectures are supported:

* Intel 1386 32-bit and AMD 64-bit Platforms
ARM 32-bit (OABI, EABI and ARMHF ABI with support for Thumb)
» PowerPC 32-bit (support for callbacks not implemented for Linux/BSD)

MIPS 32- and 64-bit (support for callbacks not yet implemented)
SPARC 32- and 64-bit (support for callbacks not yet implemented)

The DynCall libraries are tested on Linux, Mac OS X, Windows, BSD derivates and more ex-
otic platforms such as game consoles and Plan9. Please see the details on portability for dyncall,
dyncallback and dynload and the official DynCall manual for full details of the back-end. The R
Package has been tested on several major R platforms. The following gives a list of comments on
platforms about the status of this package.

Linux Debian 4/ppc32 , R-2.4.0 : ok, but no callbacks.
Linux Debian 5/arm , R-2.7.0 : ok, SDL not tested.
Linux Debian 6/x86 , R-2.12.2: ok.

Linux Debian 6/x64 , R-2.12.2: ok.

Linux Ubuntu 10/armv7, R-2.14 : ok.

Linux Fedora 14/x86 : ok.

Linux Ubuntu 12/i386 , R-2.15.1: ok.

Mac OS X 10.4/ppc , R-2.10.0: ok.

Mac OS X 10.6/x86 , R-2.12.2: ok.

Mac OS X 10.6/x64 , R-2.12.2: ok.

Mac OS X 10.7/x64 , R-2.15.1: ok.

NetBSD 5.0/x86 : ok.

NetBSD 5.1/x64 : ok.

OpenBSD 4.8/x64 , R-2.7.0 : SDL failed.
Windows XP/x86 , R-2.12.2: ok.

https://dyncall.org
https://dyncall.org

rdyncall 21

Windows 7/x86 , R-2.12.2: ok.
Windows 7/x64 , R-2.12.2: ok, use correct 64-bit SDL DLL, SDL extension not tested - see rdyncall-demos)
FreeBSD 8.2/x86 : build ok, no tests made for X11.

References

Adler, D. (2012) “Foreign Library Interface”, The R Journal, 4(1), 30-40, June 2012. https:
//journal.r-project.org/articles/RJ-2012-004/

Adler, D., Philipp, T. (2008) DynCall Project. https://dyncall.org

Examples

Not run:
multimedia example
load dynports for OpenGL, Simple DirectMedia library
globals:
surface <- NULL
init SDL and OpenGL
init <- function()
{
dynport (SDL)
dynport(GL)
if (SDL_Init(SDL_INIT_VIDEO) != @) stop("SDL_Init failed")
surface <<- SDL_SetVideoMode(320,240,32,SDL_DOUBLEBUF+SDL_OPENGL)
cat("surface dimension:"”, surface$w, "x",surface$h,sep="")
3
draw blue screen
updateSurface <- function(t)
{
glClearColor(0,0,t %% 1,0)
glClear (GL_COLOR_BUFFER_BIT+GL_DEPTH_BUFFER_BIT)
SDL_GL_SwapBuffers()
3
wait till close
mainloop <- function()
{
quit <- FALSE
evt <- cdata(SDL_Event)
base <- SDL_GetTicks() / 1000
t<-0
while(!quit) {
updateSurface(t)
while(SDL_PollEvent(evt)) {
if (evt$type == SDL_QUIT) quit <- TRUE
3
now <- SDL_GetTicks() / 1000
t <- now - base
}
3
init()
mainloop()

https://journal.r-project.org/articles/RJ-2012-004/
https://journal.r-project.org/articles/RJ-2012-004/
https://dyncall.org

22

End(Not run)

rdyncall-demos

rdyncall-demos rdyncall demos: Platform installation notes for required libraries

Description

The demos of the rdyncall package (see demo(package="rdyncall")) use shared libraries such as
SDL, OpenGL and Expat via dynports - a dynamic binding approach which requires, that prebuilt

binary shared library files are already installed.

Depending on the host system, some libraries are officially a part of the OS or Distribution, some

others need to be installed to get the demos running.

As of the current version of this package, the installation of additional shared C libraries need to
be done manually. It follows an overview of the required libraries and installation notes for various

operating-systems and distributions.

Overview of Libraries

The following Libraries are used as ‘run-time’ pre-compiled binaries for the particular target OS
and Hardware platform. Some notes on installation of additional run-time libraries required for

some rdyncall demos:

Lib Description URL

expat XML Parser http://www.libexpat.org

GL Open Graphics Library http://opengl.org, http://www.mesa3d.org
GLU OpenGL Utility Library see links above

glew OpenGL Extension Wrangler Library https://glew.sourceforge.net/

SDL Multimedia Framework http://1libsdl.org/

SDL_mixer Music Format playing http://www.libsdl.org/projects/SDL_mixer/
SDL_image Image Format loading http://www.libsdl.org/projects/SDL_image/
SDL_ttf True Type Font rendering http://www.libsdl.org/projects/SDL_ttf/
SDL_net Network I/0 http://www.libsdl.org/projects/SDL_net/

In short: Place the shared libraries (*.DLL, *.so or *.dylib) in a standard location or modify
LD_LIBRARY_PATH(unix) or PATH(windows) so that dynfind can find the libraries.

On Mac OS X framework folders are supported as well. Place the *. framework folder at /Library/Frameworks.

Detailed platform-specific installation instructions follow up.

Windows Installation Notes

Download the . zip files, unpack them and place the *.DLL files to a place within PATH.

32-Bit versions:

http://www.libexpat.org
http://opengl.org
http://www.mesa3d.org
https://glew.sourceforge.net/
http://libsdl.org/
http://www.libsdl.org/projects/SDL_mixer/
http://www.libsdl.org/projects/SDL_image/
http://www.libsdl.org/projects/SDL_ttf/
http://www.libsdl.org/projects/SDL_net/

rdyncall-demos 23

Lib Download Link

expat https://expat.sourceforge.net (TODO:test installer)

GL pre-installed

GLU pre-installed

glew http://sourceforge.net/projects/glew/files/glew/1.7.0/glew-1.7.0-win32.zip/download
SDL http://www.libsdl.org/release/SDL-1.2.14-win32.zip

SDL_image http://www.libsdl.org/projects/SDL_image/release/SDL_image-1.2.10-win32.zip
SDL_mixer http://www.libsdl.org/projects/SDL_mixer/release/SDL_mixer-1.2.11-win32.zip
SDL_ttf http://www.libsdl.org/projects/SDL_ttf/release/SDL_ttf-2.0.10-win32.zip
SDL_net http://www.libsdl.org/projects/SDL_net/release/SDL_net-1.2.7-win32.zip

64-Bit version:

Lib Downdload Link

expat no prebuilt found (TODO: build)

GL pre-installed

GLU pre-installed

glew http://sourceforge.net/projects/glew/files/glew/1.7.0/glew-1.7.0-win64.zip/download
SDL http://mamedev.org/tools/20100102/sd1-1.2.14-r5428-w64.zip

SDL_image pre-built n/a
SDL_mixer pre-built n/a
SDL_ttf pre-built n/a
SDL_net pre-built n/a

The prebuilt version of SDL from http://www.drangon.org/mingw did not work (exiting with
OpenGL errors). If you know of other resources for prebuilt 64-bit packages for SDL and expat,
please report.

Mac OS X Installation Notes

Download the *. dmg files, mount them (by double-click) and copy *. framework folders to /Library/Frameworks.

Lib Download link

expat pre-installed

GL pre-installed

GLU pre-installed

glew port install glew

SDL http://www.libsdl.org/release/SDL-1.2.14.dmg

SDL_image http://www.libsdl.org/projects/SDL_image/release/SDL_image-1.2.10.dmg
SDL_mixer http://www.libsdl.org/projects/SDL_mixer/release/SDL_mixer-1.2.11.dmg
SDL_ttf http://www.libsdl.org/projects/SDL_ttf/release/SDL_ttf-2.0.10.dmg
SDL_net http://www.libsdl.org/projects/SDL_net/release/SDL_net-1.2.7.dmg

https://expat.sourceforge.net
http://sourceforge.net/projects/glew/files/glew/1.7.0/glew-1.7.0-win32.zip/download
http://www.libsdl.org/release/SDL-1.2.14-win32.zip
http://www.libsdl.org/projects/SDL_image/release/SDL_image-1.2.10-win32.zip
http://www.libsdl.org/projects/SDL_mixer/release/SDL_mixer-1.2.11-win32.zip
http://www.libsdl.org/projects/SDL_ttf/release/SDL_ttf-2.0.10-win32.zip
http://www.libsdl.org/projects/SDL_net/release/SDL_net-1.2.7-win32.zip
http://sourceforge.net/projects/glew/files/glew/1.7.0/glew-1.7.0-win64.zip/download
http://mamedev.org/tools/20100102/sdl-1.2.14-r5428-w64.zip
http://www.drangon.org/mingw
http://www.libsdl.org/release/SDL-1.2.14.dmg
http://www.libsdl.org/projects/SDL_image/release/SDL_image-1.2.10.dmg
http://www.libsdl.org/projects/SDL_mixer/release/SDL_mixer-1.2.11.dmg
http://www.libsdl.org/projects/SDL_ttf/release/SDL_ttf-2.0.10.dmg
http://www.libsdl.org/projects/SDL_net/release/SDL_net-1.2.7.dmg

24

Linux/Debian Installation Notes

Debian Package installation via aptitude

aptitude install <pkg-names>..

Lib
expat
GL
GLU
glew
SDL
SDL_image
SDL_mixer
SDL_ttf
SDL_net

rdyncall-demos

Debian Package name(s)
libexpat1 (version 1.5.2 - already installed?)
libgll-mesa-glx and libgl1-mesa-dri

libglul-mesa
libglew1.5

libsdl1.2debian and 1libsdl1.2debian-<SOUNDSYS>

libsdl-imagel.
libsdl-mixert.
libsdl-ttf2.0
libsdl-net1.2

2
2

Depending on your sound system, <SOUNDSYS> should be explaced with one of the following: alsa,
all, esd, arts, oss, nas or pulseaudio. Tested with Debian 5 and 6 (lenny and squeeze).

Linux/Fedora Installation Notes

pkcon install <pkgname>..

Lib
expat
GL
GLU
glew
SDL
SDL_image
SDL_mixer
SDL_ttf
SDL_net

RPM Package name
expat

mesa-1ibGL
mesa-1ibGLU

glew

SDL

SDL_image
SDL_mixer

SDL_ttf

SDL_net

Tested with Fedora 13 and 14 on x86 and x86_64.

Linux/openSUSE Installation Notes

zypper in <pkgname>..

Lib
SDL
SDL_image
SDL_mixer
SDL_net

Package Name
1ibSDL
1ibSDL_image
1ibSDL_mixer
1ibSDL_net

rdyncall-demos 25

SDL_ttf 1ibSDL_ttf
glew 1ibGLEW1_6

openSUSE installation notes have not been confirmed.

NetBSD Installation Notes

Installation via pkgsrc:

pkg_add <pkgname>..

Lib pkgsrc name
expat expat

GL Mesa

GLU glu

glew glew

SDL SDL

SDL_image SDL_image
SDL_mixer SDL_mixer
SDL_ttf SDL_ttf
SDL_net SDL_net

OpenBSD Installation Notes

Using packages:

pkg_add <pkgname>. .

Lib port name
expat expat
SDL SDL

SDL_image sdl-image
SDL_mixer sdl-mixer
SDL_ttf not available
SDL_net sdl-net

The SDL dynport failed on OpenBSD 4.8 - so no multimedia demos here - using the R 2.7 from the
ports tree. This must have been something to do with pthread discrepancies between SDL and R.

26

FreeBSD Installation Notes

Using packages:

pkg_add -r <pkgname>..

Lib
expat
GL
glew
SDL
SDL_image
SDL_mixer
SDL_ttf
SDL_net

Solaris Installation Notes

struct

pkgname
expat2
xorg

glew

sdl
sdl_image
sdl_mixer
sdl_ttf
sdl_net

OpenCSW offers prebuilt binaries for Solaris. The installation of OpenCSW packages is done via

pkgutil.

pkgutil -i <pkgname>..

See http://www.opencsw.org for details on the OpenCSW project.

Lib pkgname
expat expat
GL mesalibs
GLU mesalibs
glew glew
SDL libsdl1_2_0
SDL_image sdlimage
SDL_mixer sdlmixer
SDL_net sdlnet
SDL_ttf sdlttf
struct Allocation and handling of foreign C aggregate data types

Description

Functions for allocation, access and registration of foreign C struct and union data type.

http://www.opencsw.org

struct 27

Usage

cdata(type)

as.ctype(x, type)

cstruct(sigs, envir=parent.frame())
cunion(sigs, envir=parent.frame())

S3 method for class 'struct'

x$index

S3 replacement method for class 'struct'
x$index <- value

S3 method for class 'struct'

print(x, indent = 0, ...)
Arguments
X external pointer or atomic raw vector of S3 class ’struct’.
type S3 typeinfo Object or character string that names the structure type.
sigs character string that specifies several C struct/union type signatures.
envir the environment to install S3 type information object(s).
index character string specifying the field name.
indent indentation level for pretty printing structures.
value value to be converted according to struct/union field type given by field index.

additional arguments to be passed to print method.

Details

References to foreign C data objects are represented by objects of class ’struct’.

Two reference types are supported:

 External pointers returned by dyncall using a call signature with a typed pointer return type
signature and pointers extracted as a result of unpack and S3 struct $-operators.

e Internal objects, memory-managed by R, are allocated by cdata: An atomic raw storage
object is returned, initialized with length equal to the byte size of the foreign C data type.

In order to access and manipulate the data fields of foreign C aggregate data objects, the “$” and
“$<- S3 operator methods can be used.

S3 objects of class struct have an attribute struct set to the name of a typeinfo object, which
provides the run-time type information of a particular foreign C type.

The run-time type information for foreign C struct and union types need to be registered once
via cstruct and cunion functions. The C data types are specified by sigs, a signature character
string. The formats for both types are described next:

Structure type signatures describe the layout of aggregate struct C data types. Type Signatures
are used within the ‘field-types’. ‘field-names’ consists of space separated identifier names and
should match the number of fields.

struct-name *{’ field-types '}’ field-names ’;’

28

struct

Here is an example of a C struct type:

struct Rect {
signed short x, y;
unsigned short w, h;

b
The corresponding structure type signature is:
"Rect{ssSS}x y w h;"

Union type signatures describe the components of the union C data type. Type signatures are
used within the ‘field-types’. ‘field-names’ consists of space separated identifier names and should
match the number of fields.

union-name ’ |’ field-types’}’ field-names’;’

Here is an example of a C union type,

union Value {
int anint;
float aFloat;
struct LongValue aStruct

b
The corresponding union type signature is:

"Value|if<LongValue>}anInt aFloat aStruct;"”

as.ctype can be used to cast a foreign C data reference to a different type. When using an external
pointer reference, this can lead quickly to a fatal R process crash - like in C.

See Also

dyncall for type signatures and typeinfo for details on run-time type information S3 objects.

Examples

Specify the following foreign type:
struct Rect {

short x, y;
unsigned short w, h;
3

cstruct("Rect{ssSS}x y w h;")
r <- cdata(Rect)

print(r)

r$x <- 40

typeinfo

r$y <- 60
réw <- 10
r$h <- 15
print(r)
str(r)

29

typeinfo

S3 class for run-time type information of foreign C data types

Description

S3 class for run-time type information of foreign C data types.

Usage

non non

typeinfo(name, type = c("base”,"pointer”,"”struct”,"union"),
size = NA, align = NA, basetype = NA, fields = NA,

signature

NA)

get_typeinfo(name, envir = parent.frame())

Arguments

name
type

size
align
basetype
signature
envir

fields

Details

character string specifying the type name.

character string specifying the type.

integer, size of type in bytes.

integer, alignment of type in bytes.

character string, base type of “pointer’ types.

character string specifying the struct/union type signature.
the environment to look for type object.

data frame with type and offset information that specifies aggregate struct and
union types.

Type information objects are created at run-time to describe the concrete layout of foreign C data
types on the host machine. While type signatures give an abstract information on e.g. the field types
and names of aggregate structure types, these objects store concrete memory size, alignment and
layout information about C data types.

Value

List object tagged as S3 class ’typeinfo’ with the following named entries

type

size

Type name.

Size in bytes.

30 utils

align Alignment in bytes.
fields Data frame for field information with the following columns:
type type name

offset byte offset (starts counted from 0)

See Also

cstruct for details on the framework for handling foreign C data types.

utils Utility functions for working with foreign C data types

Description

Functions for low-level operations on C pointers as well as helper functions and objects to handle
C float arrays and strings.

Usage

is.nullptr(x)

as.externalptr(x)
is.externalptr(x)

floatraw(n)
as.floatraw(x)
floatraw2numeric(x)

ptr2str(x)
strarrayptr(x)
strptr(x)

offset_ptr(x, offset)

Arguments
X an R object.
n number of elements to allocate.

offset a offset given in bytes.

utils 31

Details

is.nullptr tests if the external pointer given by x represents a C NULL pointer.

as.externalptr returns an external pointer to the data area of atomic vector given by x. The
external pointer holds an additional reference to the x R object to prevent it from garbage collection.

is.externalptr tests if the object given by x is an external pointer.

floatraw creates an array with a capacity to store n single-precision C float values. The array is
implemented via a raw vector.

as.floatraw coerces a numeric vector into a single-precision C float vector. Values given by x
are converted to C float values and stored in the R raw vector via pack. This function is useful
when calling foreign functions that expect a C float pointer via dyncall.

floatraw2numeric coerces a C float (raw) vector to a numeric vector.
ptr2str, strarrayptr, strptr are currently experimental.

offset_ptr creates a new external pointer pointing to x plus the byte of fset. If x is given as an
external pointer, the address is increased by the offset, or, if x is given as a atomic vector, the
address of the data (pointing to offset zero) is taken as basis and increased by the offset. The
returned external pointer is protected (as offered by the C function R_MakeExternalPtr) by the
external pointer x.

Value

A logical value is returned by is.nullptrand is.externalptr. as.externalptr and of fset_ptr
returns an external pointer value. floatraw and as.floatraw return an atomic vector of type raw
tagged with class 'floatraw'. floatraw2numeric returns a numeric atomic vector.

Examples

is.nullptr(NULL)

one <- as.externalptr(1)
is.externalptr(one)

floatraw(1)

floats <- as.floatraw(1:10)
all.equal(floatraw2numeric(floats), 1:10)

Index

* interface
callback, 2
dynbind, 4
dyncall, 6
dynfind, 10
dynload, 11
dynport, 15
rdyncall, 19
struct, 26
utils, 30

* programming
callback, 2
dynbind, 4
dyncall, 6
dynfind, 10
dynload, 11
dynport, 15
rdyncall, 19
struct, 26
utils, 30

.C,9

$.struct (struct), 26

$<-.struct (struct), 26

as.ctype (struct), 26
as.externalptr (utils), 30
as.floatraw (utils), 30

call signature, 2

call signature (dyncall), 6
call signatures, 4
callback, 2
ccallback, 8, 19
ccallback (callback), 2
cdata, 7, 8

cdata (struct), 26
cstruct, 16, 30

cstruct (struct), 26
cunion, 16

cunion (struct), 26

32

dyn.load, 10, 12, 15
dynbind, 4, 7,9, 15, 16, 19

dyncall, 2, 5, 6, 8, 18-20, 27, 28, 31

dyncallback, 20
dyncallback (callback), 2
dyncount (dynload), 11
dynfind, 4, 5, 10, 15, 19, 22
dynlist (dynload), 11
dynload, 5, 10, 11, 11, 19, 20
dynpath (dynload), 11
dynport, 7, 15, 20, 22
dynsym, 6, 9

dynsym (dynload), 11
dynunload (dynload), 11

floatraw (utils), 30
floatraw2numeric (utils), 30

get_typeinfo (typeinfo), 29
getNativeSymbolInfo, 6, 9, 15

is.externalptr (utils), 30
is.nullptr (utils), 30

loadDynportNamespace (dynport), 15

offset_ptr (utils), 30

pack (packing), 17
packing, 7,17, 19
print, 27

print.struct (struct), 26
ptr2str (utils), 30

raw, 31
rdyncall, 19
rdyncall-demos, 15, 19-21, 22

rdyncall-package (rdyncall), 19

reg.finalizer, 3

signature, 3, 18, 27, 29

INDEX

signature (dyncall), 6
strarrayptr (utils), 30
strptr (utils), 30
struct, /9, 26

type information (typeinfo), 29
type signature, 18, 29

type signature (dyncall), 6
typeinfo, 27, 28, 29

unpack, 5, 27
unpack (packing), 17
utils, 30

33

	callback
	dynbind
	dyncall
	dynfind
	dynload
	dynport
	packing
	rdyncall
	rdyncall-demos
	struct
	typeinfo
	utils
	Index

